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Peristaltic pumping in water waves 
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In this paper we calcuiate the streaming induced by gravity waves passing over a 
thin fluid layer, one side of which is rigid while the other is a flexible, inextensible 
membrane. The problem is relevant to some recent laboratory experiments by Allison 
(1983) on the pumping action of water waves. 

On the assumption that the flow is laminar and that the lateral displacement b of 
the membrane is small compared with the thickness A of the fluid layer, we calculate 
the velocity profile of the streaming U within the layer. This depends on the ratio 
A / 6 ,  where 6 is the thickness of the Stokes layers a t  the upper and lower boundaries. 
When 0 < A / &  < 6 the boundary layers interact strongly and the velocity profile is 
unimodal. At large values of A / &  the profile of U exhibits thin ‘jets’ near the 
boundaries. 

The calculated drift velocities agree as regards order of magnitude with those 
observed. However, the pressure gradients observed were larger than those calculated, 
due possibly to turbulence, but probably also to  finite-amplitude and end-effects. 

The theory given here can be considered as an extension of the theory of peristaltic 
pumping to flows at higher Reynolds number. 

1. Introduction 
In  a recent experiment to extract power from the mass transport in water waves, 

Allison (1983) laid a flexible bag, 6 m long and 0.5 m wide, on the floor of a wave 
basin, with the longer side in the direction of wave propagation. The two ends of the 
bag were connected externally by a rigid pipe. In  the presence of gravity waves of 
0.8-2.5 s period i t  was found that mean circulation of fluid took place down-wave 
through the bag, returning via the pipe. If the pipe was constricted, a mean head 
of 1-2 cm of water was built up. 

The aim of the present note is to analyse the fluid mechanics of this effect. We shall 
show that the pumping action is due very largely to viscosity, being similar to that 
occurring in organic tubes (Jaffrin & Shapiro 1971). 

I n  any oscillating flow, the importance of viscosity in inducing a steady streaming 
close to a rigid or flexible boundary has been known ever since Rayleigh (1884) 
analysed the currents induced by standing oscillations in air or water. On the other 
hand for progressive motions, the streaming tangential to  a membrane or solid 
boundary was first evaluated by Longuet-Higgins (1953). His analysis showed that 
just outside the Stokes layer, of thickness 6 = (2v/g)i, where u is the kinematic 
viscosity and cr the radian frequency of oscillation, the tangential streaming velocity 
tended to the finite value 
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Here q denotes the amplitude of the first-order oscillatory velocity relative to the 
boundary, and c is the phase speed. Particularly interesting is the fact that the 
limiting value (1.1) is independent of v and so remains non-negligible even when the 
Stokes layer itself is quite thin. This forwards streaming or jet near the bottom had 
been first noticed in water waves by Bagnold (1947), and was later confirmed by 
Russell & Osorio (1956) and many others. 

It is a forwards streaming of this type which we suggest controls the flow within 
the flexible bag in Allison's experiment. A preliminary analysis is given below in $2, 
assuming the flow to be laminar and the separation A between upper and lower 
surfaces of the bag to be large compared with the thickness S of the Stokes layers. 
In  $53 and 4 we extend the analysis to the situation of turbulent flow, and to when 
A / S  is not necessarily large. The theory gives a reasonable agreement with Allison's 
experiment. Further discussion follows in §$6 and 7 .  

2. A laminar model: 6 Q A 
The situation is idealized as in figure 1 (a ) .  Homogeneous, incompressible fluid is 

contained between a rigid plane z = 0 and a flexible membrane a t  a mean distance 
A above the bottom. The vertical oscillations in the membrane are of amplitude b 
and travel to the right with speed c ,  so that the equation of the membrane is 

z = d+bcos(kx-crt), (2.1) 

where x and z are horizontal and vertical coordinates, k is the wavenumber, and 
g/k = c. We shall assume a t  first that 

kA -g 1, ( 2 . 2 )  

that  is, the wavelength is long compared with the thickness of the fluid layer, and 

b X  

4 
2nIk 

FIGURE 1. (u) A two-dimensional model of the flexible bag. (b) A typical profile of the 
streaming velocity U .  
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also 
b / A  < 1, 

that is, the vertical displacements are only a small fraction of the layer thickness; 
this latter restriction will be modified later. The motion will be treated at  first as 
two-dimensional and independent of the y-coordinate. 

The vertical velocity w vanishes on the bottom and, when z = A ,  w is given by 
basin (kx - at) to first order in bk. Hence in general 

z 
w = -bcsin(kx-at) (2.4) A 

everywhere outside the boundary-layers. 
To begin with we shall assume 

S = (2v/a)l< +A,  

so that outside the boundary-layer the horizontal velocity is given by 

to first order in bk. To this order the tangential velocity of the membrane is negligible, 
so that in (1 .1)  the amplitude q of the oscillatory velocity relative to the boundary 
is 

(2.7) 
ba bc 

q=z2=3 
at both upper and lower boundaries. 

To evaluate the mean flow we note that, if there were no mean horizontal gradient 
in the pressure, the streaming velocity would be uniform and equal to (1 .1)  
everywhere in the interior. In the presence of a mean pressure gradient a we have 

a 2 t i  a au au 
a22 ax aZ 

to solve the equation 
v-=-+u-+w- 

(see Longuet-Higgins 1953), where ti is the time-mean velocity at a fixed point. This 
is related to the streaming velocity U by 

the last two terms representing the Stokes drift. In  view of (2.4) and (2.6), this reduces 
to 

u = u+$if/c. (2.10) 

Since the second term on the right of (2.10) is independent of z ,  we have for U in 
the interior the same equation as for a, namely 

(2.11) 

with boundary conditions 

U = - -  5 q2 when z = O , A  (2.12) 
4 c  

(see figure 1 b) .  The use of = signifies that the condition has actually to be satisfied 
just outside each boundary-layer, but since S < A the difference is negligible. In 
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addition, to second order in bk the boundary condition can be taken as satisfied a t  
the mean vertical position of the membrane, that  is a t  z = A and not on (2.1). 

The solution to the problem (2.11), (2.12) is clearly 

5q2 l m  
4 c  2pv 

U = --+--z(z- A ) .  (2.13) 

I n  other words, we add to the uniform velocity (1 .1)  a parabolic flow, symmetric about 
the central line, as in figure 1 (b ) .  

Corresponding to (2.131, the total volume flux M is given by 

If TD vanishes, the mean velocity is simply 

- 5q2 u=-- 
4 c ’  

while, if the flow is blocked so that M vanishes, we induce a pressure head 

(2.14) 

(2.15) 

(2.16) 

where L is the total length of the flexible tube. I n  general the power P available per 

P = a L M .  (2.17) unit width of the tube is 

From (2.14) this is a maximum when 
15 pv q 2  = ___  
2 A 2 c ’  

so the maximum available power is given by 

75pvL 44 P,,, = 
16 A c2‘ 

(2.18) 

(2.19) 

In  all these expressions q2/c may be replaced by (b/A)2c, where 2b is the overall 
vertical displacement of the membrane. 

3. Comparison with observation 
In  Allison’s experiment (1983, figure 6) the wave period T = 27c/o. ranged from 0.8 

to 2.5 s, in water of constant depth h = 30 cm. The wave height 2a was greatest at 
about 5.5 cm for waves of period about 1.2 s. 

The amplitude b of the vertical displacement of the membrane was however 
measured as 1 .O cm for waves of 1.1 s period. This compares with a notional amplitude 

sinh kA b’ =a- sinhkh = 0.27 cm 

of vertical fluid motion a t  a height A above the bottom, in the absence of the flexible 
bag. From Allison’s figure 2 we take A = 4.0 cm. Since b > b’ i t  appears that  the 
presence of the membrane does affect the waves above the bag, increasing their 
amplitude, possibly by wave refraction. 

For the waves of period 1 . 1  s we have from the linear dispersion relation 

kh tanh kh = g2h/g = 1.00, (3.2) 
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so 
kh = 1.20 (3.3) 

and the wavelength 2nlk is about 1 m or three times the depth h. The phase speed 
c is 143 cm/s, and if we assume the ratio b / A  in (2.7) to be constant despite variations 
in A across the width of the bag, then q is constant at 0 . 2 5 ~  or about 36 cm/s. The 
mean-flow velocity (2.15) in the absence of an external pressure gradient would be 
11.2 cm/s, in apparently good agreement with the measured velocity 13 cm/s a t  this 
wave period; see Allison's figure 8. 

However two adjustments must be made. The cross-section 51 of the external pipe, 
diameter d = 9.0 cm, at the point of measured velocity, was 

SZ = +nd2 = 64 cm2 (3.4) 

compared with the cross-section of the flexible bag, of width W = 50 cm. Assuming 
the upper surface of the bag to be parabolic, the cross-sectional area SZ' would be 

Sz' = $WA = 133 em2, (3.5) 

so that the theoretical. flow velocity should be multiplied by a factor SZ'/51 = 2.1. On 
the other hand, the external resistance to the flow, both from the turbine and from 
a pipe of non-uniform cross-section, would tend to reduce the flow, so that the 
observed flow is not necessarily in disagreement with the simple theory. 

Consider the dependence of the flow velocity upon the wave period T. The effects 
of refraction, etc. being difficult to assess, we shall assume roughly that the amplitude 
b of the vertical displacement of the bag varied simply in proportion to the theoretical 
displacement b'. Carrying through the same calculation as above for T = 1.1 s, we 
arrive at the numbers shown in table 1.  The velocity 

51' 5 q 2  v,,, = 
SZ4c (3.6) 

shown on the right of table 1 will be seen to behave qualitatively in a similar way 
to the measured velocity, with a maximum at around T = 1.2 s instead of 1.1 s. 

Consider now the maximum pressure head b] as given by (2.16). Clearly this 
depends critically on the thickness A of the fluid layer. Since in the experiment A 
was non-uniform over the width of the bag, being smaller near the two sides, (2.16) 
suggests there may have been some lateral circulation within the bag, in contrast with 

p" 
T - uah kh C 2a P C vm*x [PI 
(8) 9 (cm/s) (cm) (cm/s) (cm/s) (cm/s) (dyn/cm2) 
0.8 1.886 1.962 120 3.0 13 1.3 3.4 21 
0.9 1.490 1.613 160 4.5 24 3.2 8.3 53 
1 .o 1.207 1.373 137 5.0 31 6.9 17.9 113 
1.1 0.998 1.198 143 5.0 35 8.9 23.5 143 
1.2 0.838 1.064 148 5.5 42 11.8 30.6 194 
1.3 0.714 0.960 151 5.0 40 10.6 27.5 174 
1.4 0.616 0.875 154 4.2 35 8.0 20.8 132 
1.5 0.537 0.805 156 4.2 36 8.4 17.7 138 
2.0 0.302 0.579 163 3.5 33 6.8 20.8 112 
2.5 0.193 0.454 166 2.5 25 3.7 9.6 61 

TABLE 1. Wave parameters in figure 6 of Allison (1983) 
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our two-dimensional model. To estimate the actual mean pressure gradient i t  is 
perhaps reasonable to replace A by its mean value $Ao, where A,, = 4.0 em, the value 
at the centre of the cross-section. Then on taking v = 0.013 cm2/s we find for [PI the 
numerical values given in the right-hand column of table 1 .  Clearly these are less than 
the observed mean pressures in Allison's figure 8 by an order of magnitude. 

Inspection of table 1 suggests one possible reason for the discrepancy, for the 
Reynolds numbers 

R = qA/v  

are of order lo3, implying that the flow within the flexible bag is possibly turbulent. 
Now a formal extension of the theory of oscillatory boundary-layers to turbulent 

flow was given by Longuet-Higgins (1956), who showed that if the molecular viscosity 
v were replaced by a coefficient of kinematic viscosity N which was a function only 
of the mean distance 5 of a particle from the boundary (N being constant following 
a particle), then in a progressive wave motion, though the details of the boundary 
layer depended on the form of N(z), the limiting drift velocity U outside the layer 
was unaffected. That is to  say (1 .1)  remained valid. Indeed, some such result was 
necessary to explain the observations by Russell & Osorio (1956). 

In  a turbulent flow the complete velocity profile (corresponding to (2.13) in the 
laminar conditions) must depend on the function N ( @ .  The observational evidence, 
combined with equation (2.16), suggests that  in order of magnitude N should be about 
1 0 ~ .  The result of increasing the effective viscosity by this amount would be to 
multiply the thickness S of the boundary layer by a factor (Nlv)?, or about 3. For 
waves of 1 s period, for instance, 6 would be increased from 0.064 em to about 0.2 em. 
As this is beginning to be comparable to the half-thickness of the layer within the 
bag, there may in fact be some interaction between the upper and lower boundary 
layers, leading to a reduction in the net mean flow. We investigate this effect in 94. 

(3.7) 

4. Boundary-layer interactions: & / A  = 0(1) 
We now extend and generalize the analysis of $2 to  a situation when the thickness 

of the boundary-layer is no longer small compared with the thickness of the fluid layer 
in the flexible bag. Thus we assume &/A = 0 ( 1 ) ,  where S = (2v/a)$. However, the 
restrictions 

will be retained. The first of these implies that  the wavelength is long compared with 
the thickness A of the layer, so that a/ax Q a/& in general. The second implies that 
the stream function may be expanded in the form 

k A Q  1,  b / A +  1 (4.1) 

(4.2) 

where e is a small parameter of order b / A ,  and we may use the equations for the mass 
transport and mean flow developed by Longuet-Higgins (1953). 

Thus for the first-order flow we have the different,ial equation 

(& vvz)  V2l/k1, = 0, (4.3) 

in which V2 may be approximated by a2 /az2 .  The boundary conditions arc that 

1 + + ~ ~ = 0 ,  Plz = 0  when z =  0, (4.4) 

qbl, = -to, @lz = 0 when z = A ,  (4.5) 
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progressive wave this is given by (2.4). Using complex notation, so $l cc ei(kx-ut) > we 

(4.6) $ l Z t  - V $ l Z Z Z Z  = 0 

= 0, 1 + ? ~ ~ = 0  when z = O ,  (4.7) 

, $ l z = O  when z =  A .  (4.8) 

(4.9) 

399 

where w denotes the vertical velocity imposed at the upper membrane. For a 

have 

with 

$ - cA ei(kx-ut) 
1 -  

The solution of these equations is 

$l = [A(coshaz- 1)+ B(s inhaz-a~)]e ' ( "~-~~) ,  
where 1 -i 

a = (r";); = 7, 
and A and B are constants, satisfying 

A(coshaA- l)+B(sinhaA-ad) = cd, 

AsinhaA+B(coshad-1) = 0. 

(4.10) 

(4.11) 

For the stream function e Z q 2  of the mean motion a t  a fixed point in the fluid, we 
have from the momentum equations 

(4.12) 

a is the mean horizontal pressure gradient, p is the density, and an overbar denotes 
the mean value with respect to time. The terms on the left represent the convected 
momentum. 

Since the motion is periodic in the x-direction, the first term $ l Z $ l x Z  vanishes 
identically. In  the second term, since the motion is progressive, we may replace a/ax 
by -c - 'a /a t ,  and then use the property that if F and G are any two periodic quan- 
tities 

F,G+FGt = 0. (4.13) 
Hence 

$1x $lZZ = -; I+?U $lZZ = $1 9 l Z Z t .  (4.14) 
1- 1- 

On substituting for $lzZt  from (4.6) we obtain for pz the equation 

(4.15) 

To obtain the mass-transport velocity we note that the stream function e2!P for 

!P= 3 z + m  (4.16) 

in general (see Longuet-Higgins 1953, equation (36)). The second group of terms on 
the right corresponds to the Stokes drift. For progressive motion, on replacing $lx 
by -c-'$,, and using (4.13) we have 

the mass transport is related to 3, by 

so that (4.14) can be written 
1 -  

!P= F 2 + 5 ( $ 3 Z .  

(4.17) 

(4.18) 
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From (4.15) and (4.18) we obtain for Y the equation 

(4.19) 

This can be further simplified. For by Leibnitz’s theorem the first two terms on the 
right can be written 

1 1 1 3 a 2  - 
- ( $ I ~ ~ z z z z + ~ $ ~ ~ $ ~ z E z + ~ ~ ~ z ) - ~ ~ ~ $ ~ ~ z z z  c = ~($lz$lzzz+~@$&). ( 4 ~ ~ 0 )  

But from (4.6) we have 

and so on integration with respect to z 

$1, = vJ$I,&+Q, 

where Q is independent of z .  I n  fact 

V - aB ei(kz-ut). Q = ($lzzz)z-~ - - 

Multiplying (4.22) by $lzz, and averaging, we have 

+lZ$lZZZ = Q$1zzr 

From (4.19), (4.20) and (4.24) we have altogether 

To obtain the mass-transport velocity 

u = €2Yz 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

we now need only integrate (4.25) twice with respect to z ,  subject to  the two boundary 

(4.27) conditions U = O  when z = O  and z =  A .  
Since +lz vanishes on both boundaries, we have immediately 

The total volume flux M is equal to e 2 [ q i ,  and so 

(4.28) 

(4.29) 

In  evaluating the time-averaged terms in (4.28) and (4.29) we may use the complex 
expressions (4.9) and (4.23) for ?,h1 and Q together with the rule 

FG = $(FG* + F*G) = 4 Re FG*. 
- 

(4.30) 

5. Discussion 

quantities of order ePad, we see from (4.11) that  
Consider first the case when A B 6. Then from (4.10) we have ladl B 1 .  Neglecting 



Peristaltic pumping in water waves 40 1 

8 

6 

z - 
6 

4 

L 

C 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I I\ 
‘ \  
I \  
I \  
I \  
I \  
I \  

I \  
I 1  
I I  
I /  
I I  

; \ i i  

I 
q=/c  

FIGURE 2. The streaming velocity U and the Eulerirtn-mean velocity ii in the 
boundary-layer at the bottom when w = 0 and A16 4 1. 

Hence near the bottom, when az = 0(1), we find 

(5.2) 

This is the stream function for a Stokes layer (see Lamb 1932, $347) in which as az + CQ 

the horizontal velocity qklz tends to (bc f A )  ei(kx-ut), as in $2 above. Similarly near 
the upper surface, setting z = A+z’, with az’ = 0(1 ) ,  we find, after approximating 
A and B more closely, that  

(5.3) 

@ - A (e-az + - 1 ) ei(kz-gk) 
1 -  

= A(ad - 1 + az’ -ear‘) ei(kz-ut) 

which represents a similar Stokes layer on the underside of the membrane (2’ < O ) ,  
but with an imposed vertical velocity igb  ei(kx-ut) as in $2. 

It will be noticed that the two Stokes layers are nearly but not quite symmetrical 
with respect to  the mean level, the strength of the bottom layer being greater than 
that at the upper membrane by a factor 11 -2/aAl-l, with a slight phase difference 
of order & / A .  

The mass-transport velocity U in the lower layer is easily calculated from (4.28) 
together with (5.2). When m = 0 we obtain 

(5.4) 

where q = bc/A, the amplitude of the first-order horizontal oscillatory velocity just 
outside the boundary layer. At this point the streaming velocity is U = 5q2/4c just 
as in (1 .1) .  The velocity profile within the layer is shown in figure 2, plotted against 
z f A .  We show also the profile of ii = ez$2z, the mean velocity a t  a fixed point. As will be 
seen, this tends to  a different value, namely 3q2/4c, and is quite distinct from U .  
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FIQURE 3. The streaming velocity U and the Eulerian-mean velocity fi as 
functions of z / A ,  when m = 0 and A / &  4 1. 

The streaming in the upper boundary-layer, which we get from (4.26) and (5 .3 ) ,  

Thus we have shown that, in the case when A >> 6, there is no significant interaction 

In the opposite case when A < 6, the first-order solution (4.9) reduces to 

is entirly similar to (5.4), being given by reflecting (5.4) in the mean level z = + A .  

between the boundary-layers, and the mean flow is as described in 92. 

so 
q k l Z  = 6q 5( 1 - 6) ei(kx-ct), 

where 6 = z / A  and from (4.28) 

(5 .5)  

This represents a quartic velocity profile (see figure 3 )  with a total transport 

3 q 2 A  1 ad3 J.f=----- 
2 c 12 pv . 

If the flow is blocked so that M = 0, the resulting pressure-gradient wmax is given 

PVq2 wmaX == 18-. 
cA2 (5.9) 

For general values of the ratio A / S  it  is clear that the profile of the mass-transport 
velocity has the form 

(5.10) 
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FIQURE 4. Profiles of the streaming velocity U when w = 0 and A / 8  = 1, 4, 6, 8, 16 and co. 

where q is the typical horizontal velocity b c / A  (cf. (2.7)). If.we define a Reynolds 
number R by 

A LA@ 
then A / S  is related to R by 

- - 

8-m' 

(5.11) 

(5.12) 

I n  figure 4 we have plotted the function @ for a number of different values of A / & .  
The transition from the profile (5.7) at low values of A / &  to the double boundary-layer 
profile (5.4) a t  high values of A / 6  can be clearly seen. Between A / 6  = 1 and 6 the 
velocity profile is unimodal. Between A / &  = 6 and 8 the curvature at the central level 
z / A  = 0.5 changes sign and the profile becomes bimodal. As A / &  increases further, the 
velocity maxima move apart towards the boundaries and new, less pronounced, 
oscillations develop near the centre. Finally as A / b + C o  the profile tends to the 
limiting form indicated by the straight lines. This is the limiting form used in $2. 

It can be seen that even when A / &  is as low as 4 there is a strong interaction between 
the two boundary layers. Remarkably, however, little change in the profile takes place 
when A / 6  < 4. Indeed the profile for A / &  = 1 is practically indistinguishable from the 
limiting form (5.8) corresponding to A / 6  = 0. 

I n  figure 4 we have plotted only the profiles corresponding to zero pressure gradient, 
w = 0. For general values of m one has only to add a parabolic velocity profile, as 
in (4.28). 

The profiles for Uare all symmetric about the mean level, in spite of the asymmetry 
in the first-order velocity kIz, The boundary conditions (4.7) and (4.8) for are 
indeed asymmetric, but could be made symmetric by the addition of a small 
transverse (vertical) velocity - & b r  ei(kz-ut), independent of z. This would not affect 
the mechanics of the drift velocity U a t  lowest order in E and k A .  Hence, provided 
that the amplitude b of the vertical displacement is small compared with the thickness 
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FIGURE 5. The integral I ,  giving the total mass flux in the fluid layer at 
zero pressure-gradient (see (5.13)). 

A ,  and also that A is small compared with the wavelength, the mass-transport velocity 
must be symmetric. 

From equation (5.10) the total volume flux M can be expressed in the form 

(5.13) 

where 
(5.14) 

In  figure 5 we have plotted I as a function of A / & .  Evidently I is almost a constant, 
lying always between the two limiting values 1.5 and 1.25. 

From (5.13) the maximum pressure gradient wmax is given by 

vq2 wmax = 12- I ,  
A2c 

(5.15) 

or, if we express q in terms of the vertical displacement b a t  the upper boundary 
( q  = b c / A ) ,  then 

wmax = 12-I. (5.16) 

This shows that, given the measured parameters b,  c and A ,  the pressure gradient 
depends primarily upon v, at least for small values of b / A .  Thus the replacement of 
the laminar coefficient v by an effective eddy coefficient v, might account for the 
observed pressure difference [PI. 

vb2c 
A4 

6. Effects of finite amplitude 
When b / A  is no longer small, the formulae of $5 must be modified. A general 

solution will not be attempted here, but we note that in the extreme case b = A ,  when 
the whole layer is occluded by the perturbation, then q = bc /A  = c .  Since the fluid 
is carried along with mean velocity c and the mean thickness of the layer is still equal 
to A ,  the transport M is 

(6.1) 

In other words (5.13), with rn = 0, remains valid if we substitute I = 1.00. This 
represents a change of less than 50 yo from the value for b / A  Q 1 .  

P2A M = CA =-. 
C 



Peristaltic pumping in water waves 405 

On the other hand the pressure gradient m must be more drastically affected by 
the finite amplitude. For in the constricted portions of the channel, where the fluid 
flow tends to be reversed, not only is the strength of the oscillating component of 
the current greater (at zero mean flux) owing to conservation of mass, but also the 
pressure gradient is more than proportionately increased. In  the limiting case b = A 
it is clear that mmaX must tend to infinity. Hence (5.15) and (5.16) must be serious 
underestimates, even a t  some values of b / A  less than 1. 

7. End-effects 
We have so far neglected any effects due to the two ends of the bag. But if, for 

example, the flow in the pipe is blocked, the condition of zero net flow a t  the down-wave 
end may result in a reflected, damped elastic wave, which will tend to increase the 
amplitude p ,  of the pressure fluctuation there; in fact p ,  may be about double the 
corresponding amplitude far from the ends, i.e. 

p, - 2pga sech kh, (7.1) 

and similarly for the fluctuation p, a t  the other end. The pressure difference 
between the two ends will be at most 

p, +p, - 4pga sech kh (7.2) 

when the phases are opposite. This estimate agrees quite well with the relation 
between the peak-to-peak pressure P and the wave height H in figure 6 of Allison 
(1982). At the same time, the observed irregularities in the curve for P may be 
accounted for by phase differences between the two ends of the bag. The effect of 
the two ends on the second-order mean-pressure difference is, however, more difficult 
to estimate. 

8. Conclusions 
We have calculated the mean-drift velocities induced by water waves progressing 

over a thin flexible bag laid on the bed of a wave tank. The induced velocities are 
similar to those measured by Allison, but the calculated pressure gradients are smaller 
than those observed. 

Among the assumptions in our calculation are that the flow was laminar, and that 
the amplitude of the vertical displacement b of the bag was small compared with the 
thickness A of the contained layer of fluid. Part of the discrepancy may be due to  
turbulence in the fluid. Although turbulence can be partly represented by an eddy 
viscosity N(z) ,  it is no longer true, in the presence of interaction between the boundary 
layers, that the streaming is independent of N .  

A more probable cause for the discrepancies is the finite value of b / A .  This ratio 
was assumed constant over the surface of the bag. But any values much greater than 
the assumed value of 0.27 would certainly have the effect of increasing the pressure 
gradient, without drastically altering the total mean flow. 

For small displacements, the general method of calculation given in $4 above 
(which was developed previously for water waves) provides a very convenient 
framework for problems of this kind. I n  interpreting the theoretical solutions it is 
essential to distinguish between the Eulerian- and Lagrangian-mean velocities, a 
distinction not always observed in previous studies of peristaltic flow. An example 
is given in the Appendix. 
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Appendix. On the time-average velocity iz 
As pointed out in $52 and 4, the time-average iz of the velocity at  a fixed point 

differs essentially from the particle drift velocity U. In fact from (4.16) we have in 
general 

1 -  
2c 

ti = u--(@;)zz 

In figure 6 we ..ave plotted ti for comparison with U in dimensionless form when 
A / &  = 2/14. As will be seen, not only is ti quite different from U ,  but it is also 
asymmetrical. Whereas U must vanish on both upper and lower boundary, ti need 
vanish only on the lower boundary z = 0. 

The point is relevant to some previous discussions of peristaltic flow, for example 
Fung & Yih (1968) and Jaffrin & Shapiro (1971). Thus Fung & Yih studied the 
two-dimensional flow induced by small oscillations of the two boundaries of a thin 
fluid layer. Their analysis is directly comparable with ours, with a Reynolds number 
R' equivalent to our ( A / & ) 2 / k A .  In  numerical examples they took BkAR' equal to 0.1, 
0.4 and 7.0. However, their discussion is solely in terms of the second-order mean 
velocity ti, not the drift velocity U .  The appropriate condition for a reflux, or reverse 
flow, is surely not iz < 0 but rather U < 0. Moreover, with a moving boundary the 
total flux M cannot be obtained by integrating fiup to the mean boundary; additional 
second-order terms are involved. Lastly, in Fung & Yih's paper it is not clear that 
the correct boundary condition U = 0 has been employed. 

The correct solution to Fung & Yih's problem can in fact be written down 
immediately from the analysis of $4 above. Moving the origin 0 to the central level 

\ 
\ 

FIGURE 6. Comparison of the Eulerian- and Lagrangian-mean velocities (a and U )  when 
A / S  = d 1 4  = 3.742. Also shown is the Eulerian-mean velocity 4' in the problem of Fung & Yih 
(1968). 
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z = +A by writing z' = z -&A we have for the first-order motion $; the boundary 

$' - 1 A ei(kz-ot) , @lz = O  when z ' = & A ,  1 - 2c 

@; = -&,-A ei(kz-at) , @ l z = O  when z ' = - & A ,  

conditions 

where E = b / A  and the amplitude of the vertical displacement at each membrane 
equsls Bb. The required solution is 

az' cosh (tad) - sinh az' eifkz-trt), 
" = &A cosh ( tad)  -sinh (Bad) 2 

This compares with the first-order solution @l of (4.9), which can be expressed simply 
as 

Clearly @;, = $1, and in (4.21) &' = &. Therefore by (4.26) the mass-transport 
velocity U' is given by 

and so is described by the curves in figures 4-6. 

$1 = @; + $A ei(kz-gt). 

U' = u, 

(A 5 )  

(A 6) 

The corresponding Eulerian-mean velocity IZ' can be found from the relation 

which in view of (A 5 )  reduces to 

lkl,,. 
,& = ~ + l + 2 A  ei(kz-ut) 

Numerical evaluation of this expression yields the curve for 4' in figure 6, which agrees 
closely with figure 3 ( c )  of Fung & Yih (1968). 

The fact that  the Eulerian-mean velocities u and U' in the two problems are quite 
different, while the Lagrangian-mean velocities U and U' are equal confirms that the 
latter have a greater physical significance. 

The author is indebted to  Dr H. Allison for stimulating correspondence and to Drs 
T. J. Pedley and S. J. Hogan for comments. 
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